Mystery Rays

Tales from the Nuclear Age:

 Copyright © 2010 by Charles Glassmire

___________________________________________________________

Aug. 15, 2010

Mysterious Rays

           Manya Sklodlwska (Curie) was born the last of five siblings in 1867 in Warsaw, which was then under the Czarist rule of the Russian Empire. Poland hadn’t been independent for almost a century. Her parents taught Physics and Chemistry, but it was illegal to teach Polish citizens, and forbidden even to speak their native language.

          “Constantly held in suspicion and spied upon, we children     knew that a single conversation in Polish, or an imprudent word, might seriously harm themselves, and also their families…”                      Marie Curie

            Her father read the classics to her some evenings, and her parents fostered her education in the sciences. She graduated from high school first in her class and received a gold medal, even though it required shaking the hand of the (Russian) Education Director. Being an intelligent woman in a man’s world, she was rejected from university study because she was female. She then studied at an illegal night school called the Floating University. The classes constantly moved location around the city to avoid the Czar’s watchful men.

          Finally, at age 24 and fleeing a broken love relationship, she traveled to Paris where her sister was studying to become a medical doctor, and enrolled in the University of Paris (Sorbonne). It was there in 1891, that she changed her name to Marie. Living in a flat in the Latin Quarter, she suffered from the

cold and sometimes fainted for lack of food.

           “…my situation was not exceptional; it was the familiar experience of many of the Polish students whom I knew…”

Marie wrote later.

          Her diligence eventually paid dividends, finishing first in her Physics course and being awarded a scholarship and some lab space to continue study. In 1894 she shared the lab space with a scientist studying magnetism, a topic of her own research. His name was Pierre Curie.

           “Our work drew us closer and closer, until we were both convinced that neither of us could find a better life companion…”  Marie observed.

           In 1895 they were married in a civil ceremony. She wore a simple blue suit which served later for many years as a laboratory

The Honeymooners

smock. There was no exchange of rings. They took their honeymoon by touring France on two bicycles, purchased with a wedding gift.

          Having earned a degree in Physics, Marie was now pursuing her Doctorate and she urged Pierre to do so. He was an experienced researcher of some 15 years, and in March of 1985 he was awarded the Doctorate.  She chose to study the mysterious rays given off by Uranium salts as her thesis topic; this phenomenon was first reported by Becquerel in 1896. He noted they appeared to be like X-rays, and he soon became Marie’s thesis advisor. Pierre soon found her studies much more interesting than his own, and joined her in her investigations.

          Pierre had invented an instrument which measured the ionization of air. They could quantify the ray emissions by measuring the charged air around the samples. Studying the mineral Pitchblende, they soon found Pitchblende gave off four times more rays than the Uranium it contained. This meant there must be something else in the sample giving off additional rays!  And it was far more active than elemental Uranium. She soon discovered that the element Thorium also gave off these rays. The physical nature of these emanations was a challenging mystery.

          In 1898 they published the existence of another active element which Marie named “Polonium”, after her native Poland. She began to refer to these unknown emissions as “radiation”. Soon elements which gave off the rays were spoken of as “radioactive”.

          The research involved manual grinding of Pitchblende into a powder. They were unaware of the physical effects of radiation, and their hands began to show the effects. The mysterious element made up only a tiny percentage of the pitchblende ore, making it necessary to grind tons of the material for refining.

          Finally in 1902 they announced isolation of one tenth of a gram of the new material, named radium (chloride). It was to be eight more years before Marie was able to isolate the Radium metal itself.  In a darkened room, the material was found to give off a strange and fascinating blue-white glow.

          In 1903 the Royal Swedish Academy awarded the Curies and Becquerel the Nobel Prize in Physics for their discoveries. Marie became the first woman ever to be awarded the Nobel Prize. Soon she was awarded her Doctorate by the University of Paris. The financial proceeds from the award allowed them to expand their research and increase efforts.  Their fame now spread throughout the scientific world. In 1904 she gave birth to her second daughter.

          Pierre was showing an increasing deterioration of his health. He became weak and petitioned for a leave from teaching due to health reasons. His weakened body probably saw the effects of close work with radioactive materials. In 1906, on the way to a meeting in Paris, he was crossing the street in the rain, and slipped on the cobblestones. He fell under the wheels of an approaching team of horses hauling tons of materials, and tragically lost his life.

          She was devastated by the loss and described herself then as “…an incurably and wretchedly lonely person…”. The Sorbonne Physics Department gave her the chair occupied by Pierre, and as the first female professor at the University of Paris, the appointment allowed here more authority in supervising her laboratory and research. Now Polish scientists began to ask her to return to Warsaw to do her research.

          In 1911 she was awarded a second Nobel Prize in Chemistry for the separation of Radium. She established the government funded Radium Institute in 1914, where study continued on the strange metal, and it fostered four more Nobel Prize winners, including her daughter Irene.

          Fascinated by the glow of this material, Marie began to store tubes of it in her lab desk to show visitors, and she often carried

Radium Photographed by its own light.

around test tubes full in her pockets because of the pretty light it gave off.  There were no safety precautions. She began to show a familiar weakness and a painful distortion of her hands as time wore on.

          The penetrating power of these rays through the human body was recognized early on by Becquerel. It was known these rays could make the bones under the skin visible on a photographic plate, and Marie established portable X-ray units during World War I in armored vehicles , using tubes of Radon gas (given off by Radium decay) to examine war wounded. The Radon tubes came from her own industrial plant which manufactured Radium products.

          Society became quickly fascinated with the uses for this amazing new glowing material. It seemed to have a magical source of energy to emit light with no known power source. An industry quickly sprang up selling various Radium products to an eager public, which we will discuss next.

          Marie Curie died on July 4, 1934, a victim of aplastic anemia. This disease is one of the symptoms of radiation poisoning.  However, the effects of the Mystery Rays of Radium were only beginning to be felt upon society…

 (to be continued …)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: